Как считать ежемесячный платеж по кредиту формула

СОДЕРЖАНИЕ
0
8 просмотров
28 января 2019

Как рассчитать платежи по кредиту. Формула расчета кредита.

Многие заёмщики, читая условия кредитования на сайте банка, не представляют, как рассчитать ежемесячный платеж по кредиту, переплату и прочие параметры займа. Однако всё довольно просто, достаточно знать формулы расчета кредита.

Подавляющее большинство банков предлагают кредиты на условиях равных (аннуитетных) платежей. Это значит, что размер ежемесячного платежа в течение всего периода выплат не будет меняться, что очень удобно для заёмщика. Ежемесячный платеж по кредиту складывается из стоимости процентов и части погашения основного долга. При этом первое время большую часть платежа составляют проценты, доля которых уменьшается с каждым месяцем, увеличивая сумму погашения основного долга.

Формула расчет кредита

Основу всех формул расчета кредита с аннуитетными платежами составляет так называемый аннуитетный коэффициент. На его основе в дальнейшем считаются все остальные параметры кредита. Формула расчета аннуитетного коэффициента:
A = P * (1+P) N / ((1+P) N -1)
A — аннуитетный коэффициент;
P — коэффициент процентной ставки, рассчитываемый по формуле P = C/1200 , где C — размер процентной ставки в годовых, указанный банком.
N — срок выплат по кредиту в месяцах.

Формула расчета платежей по кредиту

Рассчитать ежемесячный платеж по кредиту можно достаточно легко, зная аннуитетный коэффициент. Для этого применяется формула:
Sa = A * K
Sa — ежемесячный платеж по кредиту;
A — аннуитетный коэффициент;
K — сумма кредита.

Чтобы осуществить расчет полной стоимости кредита (посчитать общую сумму долга), необходимо использовать формулу:
S = N * Sa
S — сумма всех платежей по кредиту;
N — срок выплат по кредиту в месяцах;
Sa — ежемесячный платеж по кредиту.

Далее можно легко осуществить расчет переплаты за пользование кредитом (расчет суммы процентов по кредиту):
Sp = S — K
Sp — переплата по кредиту;
S — сумма всех платежей по кредиту;
K — сумма кредита.

Вот, собственно, основные формулы расчета кредита. Если же Вы знаете допустимый для себя размер ежемесячного платежа и максимальную сумму кредита, то из приведенных формул можно вывести формулу расчета процентной ставки кредита, чтобы по данному параметру отбирать подходящие предложения банка.
Чтобы быстро рассчитать переплату по кредиту и увидеть подробную структуру платежей, можно воспользоваться нашим кредитным калькулятором онлайн. Так же вы можете скачать формулы расчета кредита в Excel, где, подставив значения суммы кредита, процентной ставки и срока выплат, вы узнаете ежемесячный платеж, полную стоимость кредита и переплату.

Приведем пример применения формул. Например, Вася хочет взять кредит на сумму 120 тысяч рублей под 24% годовых на год. Коэффициент процентной ставки составит P = 24/1200 = 0,02. Аннуитетный коэффициент равен A = 0,02 * (1 + 0,02) 12 / ((1 + 0,02) 12 — 1) =

0,094571. Таким образом ежемесячный платеж по кредиту равен: Sa = 0,094571 * 120000 = 11 348,52. Исходя из этого можно посчитать общую сумму долга: S = 11348,52 * 12 = 136 182,24, а так же переплату по кредиту: Sp = 136 182,24 — 120 000 = 16 182, 24. Разумеется, эти данные имеют небольшую погрешность, поскольку при расчете мы округлили аннуитетный коэффициент. Чтобы получить более точные результаты, необходимо пользоваться калькулятором.

Расчет ежемесячного аннуитетного или дифференцированного платежа по займу с помощью формул

Кредит является одним из самых популярных банковских продуктов. Ипотека, потребительский кредит, автокредит различаются по величине процентов и сроку действия договора займа, по принципу формирования взносов для возврата долга банку. Существует несколько способов, как рассчитать ежемесячный платеж по кредиту – это можно сделать при помощи калькулятора онлайн или самостоятельно рассчитать сумму выплаты по определенной формуле, перед тем, как оформить кредит.

Расчет ежемесячного платежа по кредиту

Сумма регулярных платежей и график погашения определяется банковским специалистом, или это можно самостоятельно вычислить при помощи формул или кредитного калькулятора на банковских сайтах. Перед тем, как рассчитать ежемесячный платеж по кредиту, надо указать доход, определиться с максимальной суммой, величиной первого взноса, сроком и ставкой, проверить верность расчета взноса банком, отсутствие допуслуг.

Самостоятельно по формулам

Существуют формулы, как рассчитать платеж по кредиту. Плата по займу состоит из двух частей – основной долг и проценты. Банк предлагает два вида платежей: аннуитетный (одинаковая сумма на протяжении всего срока) и дифференцированный – долг делится на равные доли, а размер процентов идет в сторону уменьшения суммы платежа, величина выплаты неодинаковая. Формулы расчета в этих случаях существенно различаются.

С помощью онлайн калькулятора

Если не хочется рассчитывать все вручную, стоит воспользоваться онлайн-калькулятором. С его помощью можно выяснить, как правильно рассчитать ежемесячный платеж по кредиту. Для этого необходимо ввести предполагаемый срок кредитного договора, процентную ставку и выбрать тип выплаты. Размер взносов тут не является окончательным – при заключении договора к сумме займа прибавляется страховка и другие банковские услуги.

Как рассчитать сумму ежемесячного платежа по кредиту при аннуитетном методе начисления процентов

Равные взносы по кредиту на протяжении всего срока действия договора называются аннуитетными. Это самый распространенный тип оплаты займа, где первые платежи почти полностью состоят из выплаты процентов, и только потом погашается основная сумма. Этот вид погашения долга выгоден и банку и клиенту, главное – прозрачность схемы начисления.

Стандартная формула аннуитетного способа погашения долга выглядит так: величина взноса (А) состоит из суммы кредита (К), умноженной на определенную величину, где учитывается количество месяцев (М) и процентная ставка (П 1/12)), то есть А=К*(П+(П/(1+П)М-1)) Данный пример подходит для потребительских и ипотечных займов, банки больше склонны к аннуитету.

Формула расчета аннуитета

В качестве примера в данном случае принимается сумму кредита в 200 000 р., срок договора – 6 месяцев, годовая процентная ставка – 10%. Итак, сперва надо рассчитать величину ежемесячного платежа: 200000*(0,00083333+(0,0083333/(1+0,0083333)6-1))=34312 р. Не забывайте, необходимо брать в расчет не общую величину процентной ставки, а ее двенадцатую часть.

Процентная составляющая аннуитетного платежа

Не лишне будет высчитать процентную составляющую взноса, она рассчитывается по формуле, где учитывается остаток долга и годовая процентная ставка, поделенная на 12: Н (сумма начисленных процентов) = З (сумма оставшейся задолженности)*(С(процентная ставка))/12 (количество месяцев в году). Чтобы определить часть выплаты, которая идет на погашения основного долга, надо от общей суммы отнять начисленные проценты.

Делать это нужно последовательно по каждому ежемесячному графику платежей

  • 1 месяц, проценты: 200000*0,1/12=1666,66, основной долг 34312-1666,66=32645,34
  • 2 месяц, остаток кредита 200000-32645,34=167354,66, проценты: 167354,66*0,1/12=1394,62 основной долг 34312-1394,62=32917,38
  • 3 месяц, остаток займа 167354,66-32917,38=134437,28, проценты 134437,28*0,1/12=1120,31, основной долг 34312-1120,31=33191,69

Как рассчитать месячный платеж по кредиту при дифференцированной схеме погашения кредита

Вариант, когда сумма долга уменьшается постепенно, называется дифференцированной выплатой. Он состоит из двух частей: основная (ее размер не изменяется) и убывающая, которая со временем уменьшается. Для расчета величины взноса необходимо знать окончательную сумму взноса, годовые проценты и количество месяцев, которое требуется для погашения кредита.

Формула дифференцированного платежа

Вначале надо узнать максимальный размер основной выплаты: П (основной платеж)=Р (размер кредита)/М (количество месяцев). Расчет начисленных процентов (Н) вычисляется путем умножения остатка долга. (О) на годовую процентную ставку (Пр), оставшийся результат поделить на 12 (количество месяцев в году), то есть Н=О*Пр/12. Остаток займа (О) вычисляется следующим образом: О=Р — (П*К (количество прошедших периодов)).

Для примера рассчитывается тот же кредит в размере 250000 р., взятый на полгода при ставке 10% годовых. Размер основного взноса – 250 000/6=41 666,67. Размер выплаты с момента оформления договора:

  • 1 месяц: 41666,67+(250000-41666,67*0))*0,1/12=43750 р.
  • 2 месяц: 41666,67+(250000-41666,67*1))0,1/12=43402,78 р.
  • 3 месяц: 41666,67+(250000-(41666,67*2))0,1/12=43055,56 р.

Какой метод начисления процентов более выгодный

В России большинство банков дают в долг при условии расчета платежей по аннуитетному принципу. Это выгодно для финансовых организаций, проценты начисляются с основной суммы долга, которая почти не уменьшается в начальный период выплат. С дифференцированной системой другая проблема: ее используют не так много банков, размер первых взносов высок, могут быть трудности с одобрением заявки на кредит (требуется высокий доход заемщика).

Дифференцированный тип выплаты выгоден тем, кто берет крупный займ на большой период времени (более 10 лет), например, ипотечный кредит, тогда переплата банку будет существенно меньше. С дугой стороны, при займе у банка на срок менее 5 лет разница в переплате не так велика, можно поискать выгодную процентную ставку и рассчитать для себя более приемлемую схему аннуитета.

Расчет аннуитетных платежей по кредиту: формула, пример

Кредит выдается на условиях дальнейшего возвращения средств банку. Причем вместе с погашением задолженности заемщик должен оплачивать процентную ставку. Несмотря на значимость последнего параметра, не менее важным в определении уровня переплаты является способ начисления платежей. Следует разобраться, в чем разница между разными формами погашения займа и как рассчитать аннуитетный платеж по кредиту.

Погашение задолженности по займу

В 2016 году общая сумма задолженности населения по кредиту превышала в 10 000 миллиардов рублей. Большая часть банковских организаций обговаривает условия возвращения взятых взаймы средств перед их выдачей. Существует две основных формы погашения задолженности по займу:

  • дифференцированными платежами;
  • аннуитетными платежами.

Хотя большая часть заемщиков при выборе кредитной программы обращает основное внимание на размер процентной ставки и уже на основании данного параметра подбирает оптимальный заем, способ начисления процентов и погашения кредита также играет большую роль в окончательной его стоимости.

Дифференцированные платежи являются более выгодными для заемщика. В случае подобного способа возвращения средств, клиент одновременно погашает и «тело» кредита и процентную ставку. Благодаря этому, ежемесячные выплаты будут с каждым месяцев сокращаться, поскольку с каждым месяцев проценты начисляются на меньшую сумму (тело кредита уменьшается с каждым последующим платежом).

По очевидным причинам данная форма расчета имеет ряд положительных черт. Во-первых, клиент сразу начинает выплачивать тело кредита. Во-вторых, одновременно идет погашение процентной ставки. В-третьих, благодаря постепенному уменьшению задолженности именно по телу займа, а не по процентам, конечная стоимость такого кредита ниже, нежели в случае с аннуитетными займами. Но поскольку банковские организации заинтересованы в получении как можно более высокого дохода, чаще всего ими применяется график аннуитетных платежей.

Аннуитетные платежи

В случае с дифференцированными платежами заемщик сразу же начинает погашать тело займа. Чем меньше средств должен клиент банку, тем меньшая сумма процентной ставки насчитывается. Это невыгодно финансовому учреждению, поскольку именно те средства, которые поступают за счет уплаты процентов, являются основным источником дохода таких организаций. В случае с аннуитетными платежами ситуация выглядит иначе.

Аннуитетный заем предполагает погашение задолженности равными частями (чего нет при дифференцированном кредите). Положительной чертой такой формы выплат является возможность ежемесячного внесения небольшой постоянной суммы. При дифференцированном кредите клиенту необходимо сразу вносить больше денег, но со временем платежи по займу уменьшаются. Поскольку далеко не все граждане имеют возможность выделять большое количество денег со своего бюджета, аннуитетные займы пользуются большей популярностью среди населения.

Существует веская причина, по которой финансовые учреждения также отдают предпочтение аннуитетным кредитам. При такой форме кредитования заемщик возвращает средства равными частями, однако первое время значительная часть денег идет на погашение процентов по кредиту, а не тела займа. Расчет аннуитетных платежей по кредиту производится таким образом, что клиент сразу же вносит средства в счет уплаты процента, а на погашение самого займа уходит лишь определенная часть платежа, которая увеличивается со временем.

Поскольку в первый период значительная часть средств идет на погашение процентной ставки, начисляемой на остаток по кредиту, окончательная стоимость займа будет более высокой, нежели при дифференцированном займе. Причина тому – более медленное погашение тела займа, с которого и начисляются проценты.

Как рассчитать размер платежа

Как уже было сказано ранее, аннуитетная форма платежей предусматривает ежемесячное перечисление банку одинаковых сумм. При этом сам платеж можно разбить на две основные части:

  1. Первая часть идет на погашение процентов по займу. Размер этой части постепенно уменьшается, ближе к окончанию срока выплат.
  2. Вторая часть используется для возвращения «тела» кредита. При аннуитетной форме платежей данная часть постепенно увеличивается, достигая своего пика ближе к концу погашения займа.

Чтобы разобраться, как производить расчет аннуитетных платежей по кредиту, необходимо привести формулу. Ниже будет рассмотрена формула для расчета размера платежей, а также определения, какая часть средства идет на уплату процентов, а какая – непосредственно на погашение долга.

Формула для расчета довольного сложная. В ней учитывается множество параметров, некоторые из которых незнакомы обычному рядовому клиенту финансовых учреждений. Выглядит она следующим образом.

Показатели, приведенные в формуле, обозначают:

  1. Мп – месячный платеж по займу;
  2. Сз – общее количество средств, взятых взаймы;
  3. Мпс – размер месячной процентной ставки;
  4. Ск – срок займа (количество месяцев) когда будут начисляться проценты по нему.

Формула расчета аннуитетного платежа по кредиту, как уже было сказано, довольно сложная. Для того чтобы все высчитать, придется использовать калькулятор. Чтобы лучше понять, как рассчитать данный параметр, следует привести конкретный пример.

Пример расчета аннуитетного платежа

Для того чтобы произвести расчет, необходимо знать общую сумму займа, проценты по нему, месячную процентную ставку и общий срок, на который выдан кредит. В данном случае будут использоваться следующие параметры:

  1. Сумма займа – 40 тысяч рублей.
  2. Ставка – 22% годовых.
  3. Срок, на который взяты деньги, – 2 года (то есть 24 месяца).

Прежде чем использовать формулу, необходимо установить значение еще одного параметра – месячной процентной ставки. Делается это следующим образом:

Мпс = годовая процентная ставка / 100 / 12.

В данном случае размер месячной процентов ставки будет следующим:

22 / 100 / 12 = 0, 0183.

Расчет кредита с аннуитетными платежами с такими параметрами выглядит следующим образом:

40 000 х (0,0183 / (1 – (1 + 0,0183) -24 )).

После проведения всех расчетов будет получена следующая сумма – 2075 рубля 13 копеек. Именно столько денег клиенту придется ежемесячно сплачивать для закрытия займа.

Зная окончательный размер платежа, легко вычислить, сколько денег будет переплачено после его окончательной выплаты. Для этого необходимо сумму, полученную ранее, умножить на срок кредита:

2075 * 24 = 49 803 рублей. Окончательная переплата будет составлять: 49 803 – 40 000 = 9 803 рублей.

Как облегчить проведение расчетов

Поскольку вручную производить вычисления довольно сложно, можно воспользоваться функционалом программы Excel, входящей в пакет ПО Microsoft Office от корпорации Microsoft. Среди функций, прописанных в ней, есть «ПЛТ», с помощью которой можно произвести необходимые вычисления.

Порядок действий довольно простой. Необходимо создать новую таблицу и в любой пустой ячейке прописать следующую формулу: «=ПЛТ(22%/12; 24; -40 000)». В данном случае:

  1. «=ПЛТ» – функция.
  2. 22%/12– размер годовой процентной ставки.
  3. 24– срок займа.
  4. -40 000 – сумма займа.

Знак «=» перед началом формулы имеет большое значение. Без него программа будет воспринимать введенное как простой текст и не произведет вычисления. Все параметры необходимо вводить именно в том порядке, в котором они обозначены выше. Между ними обязательно должна стоять точка с запятой. Несоблюдение данных правил может привести к ошибке во время вычислений. После введения данных необходимо нажать клавишу Enter.

Программа произведет расчет и выдаст результат, который будет соответствовать сумме, полученной в предыдущем примере. Использование Excel позволяет значительно сократить время вычислений и облегчает работу заемщику. Однако существует еще более просто способ расчета ежемесячного платежа.

Сегодня в Интернете размещено большое количество онлайн-калькуляторов, при помощи которых можно осуществить соответствующий расчет. Достаточно ввести необходимые данные (сумму займа, его срок и процентную ставку), после чего совершить операцию. Автоматическая система самостоятельно вычислит как размер месячного платежа, так и общую сумму выплат вместе с уровнем переплаты.

Вычет средств, которые пойдут на погашение процентной ставки

Заемщик также может самостоятельно рассчитать количество средств, которые взимаются в учет выплат по проценту. Для этого необходимо воспользоваться специальной формулой. Она гораздо проще предыдущей. Как рассчитать проценты по кредиту при аннуитетных платежах? Необходимо умножить количество средств, которые еще нужно внести (то есть текущий размер задолженности по займу) на месячную процентную ставку.

В качестве примера стоит вычислить, какая часть из 2075 рублей (размер ежемесячного платежа, полученный ранее) тратится на уплату процентной ставки при первом платеже. В данном случае применяется следующая формула:

  • Сз (сумма задолженности по кредиту) х Мпс.

Поскольку платеж будет первым, задолженность на момент его внесения составит 40 000 рублей. Соответственно, с 2075 рублей на уплату процента идет: 40 000*0,0183 = 732 рубля. Во втором платеже: 38657 (задолженность на момент произведения второй выплаты) * 0,0183 = 707 рублей.

Получив эти данные, заемщик может без проблем рассчитать, какая часть задолженности перед банком действительно погашается во время платежа. Для этого достаточно от суммы платежа отнять ту часть, которая уходит на проценты. Проведя это действие, заемщик получит результат – 1343 рубля (2075 – 732). При втором платеже в учет погашения тела долга уйдет 1368 р. (2075 – 707).

Соответственно, при первом переводе средств, несмотря на внесение 2075 рублей, чистый долг (без процентной ставки) уменьшится лишь на 1343 рубля и составит 38 657 р. Еще через месяц сумма задолженности уменьшится до 37 289 р. С течением времени на погашение тела будет выделяться больше средств, а на процентную ставку – меньше.

Такой подход к расчетам позволяет банку высчитывать процентную ставку с большей суммы, нежели при дифференцированных платежах. Это, соответственно, повышает размер средств, которые в итоге будут перечислены в учет процентов, и растягивает в плане продолжительности процесс погашения основного долга. То есть гражданин не только сплачивает больше денег в качестве процентной ставки, но и делает это на протяжении более длительного промежутка времени.

Следует ли соглашаться на аннуитетное погашение займа

Подобная форма погашения имеет свои преимущества. Как уже было сказано ранее, клиенту придется погашать заем путем ежемесячного перечисления небольших сумм. Поскольку в большинстве случаев в банк обращаются физические лица, не имеющие возможности выделить большое количество средств из семейного бюджета, аннуитетные платежи могут уменьшить финансовую нагрузку на гражданина.

Между тем, пример расчета аннуитетного платежа по кредиту, приведенный выше, показывает, что в таком случае заемщик значительно переплачивает. При параметрах, используемых в примере, окончательная стоимость займа будет превышать стоимость взятых взаймы средств приблизительно на десять тысяч рублей, что невыгодно для заемщика.

Дифференцированный заем сопровождается не такой большой переплатой. По этой причине он выглядит гораздо более привлекательным. Однако необходимо быть готовым к большим первым выплатам по займу (в некоторых случаях, многократно превышающим размер перечислений при аннуитетных платежах).

Таким образом, существует две основные формы расчета платежей по займу: дифференцированная и ануитетная. Вторая форма предполагает ежемесячное внесение фиксированной суммы. Она позволяет уменьшить финансовую нагрузку на заемщика, но сопровождается значительными переплатами по кредиту. Формулы, приведенные выше, дадут заемщику возможность предварительно вычислить все необходимые данные и принять решение о целесообразности взятия аннуитетного займа.

Источники: http://www.informi.ru/view.php?id=307, http://sovets.net/13929-kak-rasschitat-ezhemesyachnyj-platezh-po-kreditu.html, http://znatokdeneg.ru/uslugi-bankov/kredity/raschet-annuitetnyh-platezhej-po-kreditu-formula-primer.html

Комментировать
0
8 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно